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This paper deals with the experimental validation of an innovative system for the aircraft acoustic signature
identification which has been developed by the vibration and acoustics laboratory of the Italian Aerospace Research
Center. The system is composed of an algorithm for the acoustic signature identification and a dedicated neural
network classifier, trained with a set of experimental aircraft noise data. The algorithm test and validation has been
performed for different airplanes during takeoff and landing maneuvers. The experimental activity of ground noise
measurements has been carried out at the Naples airport of Capodichino. More than 200 aircraft noise events of five
aircraft types (Airbus A320, Boeing B737, McDonnel Douglas MD80, Fokker F100, Aerospatiale/Alenia ATR72),
during both takeoff and landing maneuver, have been measured. This paper demonstrates the feasibility of
developing a suitable artificial neural network to establish if a time signal, elaborated through a wavelet process, is or
is not similar to others, having been recognized as originated from a defined type of aircraft. The artificial neural
network was trained by the use of a subset of experimental data and then validated through a comparison with
another subset of data from the same experimental campaign. The developed software demonstrated to give more
than satisfactory results for each of the acquired spectra, with the maximum error always being under (10)%.

I. Introduction

COUSTIC signature identification techniques are commonly

used for automatic speaker recognition, that is, the labeling of
an unknown voice as one of a set of known voices. Furthermore,
great interest is growing on the monitoring and prediction of ship
signatures to minimize a ship’s susceptibility to being detected,
tracked, identified, or targeted. The acoustic signature of a naval
vessel is, in fact, one of its greatest vulnerabilities.

For aeronautical applications, this branch of research possesses
interesting potentiality. Identification of a noise source and the
association between the cause and noise admissible levels is
fundamental for airport authorities. It can be applied as support for
the radar monitoring of the airports and for the verification of
compliance with limitations of annoyance in the area around them. It
can allow the surveillance of isolated or dangerous areas and the
verification of compliance with peace agreements (“no-fly zone™).
The acoustic identification of military airplanes with small radar
detection (stealth) and the acoustic surveillance of strategic
objectives can play a crucial role in the success of military operations.

The aim of the aircraft acoustic signature identification is to
recognize the aircraft type and maneuver during different flight
conditions, by processing only the emitted acoustic signal. The
central task of the signal classification process is the feature
extraction: the assignment of noise time histories to classes which
have strictly defined properties.

The most common acoustic signature recognition techniques are
derived from the speech recognition methods, founded on time-
varying spectral signal representations in terms of time and
frequency coordinates. Typical time-frequency distributions such as
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spectograms, wavelet transforms, multispectra, and Wigner
distributions are used not only for the speech recognition, but also
for mechanical failure detection, the analysis of seismic data
processing, and biomedical engineering.

Several systems have been proposed to recognize and classify
different noise sources. A common focus of these systems is
represented by the capability of spectral details investigation from
the acoustic signatures.

The Fourier transform, widely used for the signal analysis and
processing, is not suitable to analyze time-variant spectra of
nonstationary and fast transient signals. It does not provide any
information regarding the time evolution of the spectral character-
istics of the signal. An intuitive way to analyze a nonstationary signal
is to divide it into a sequence of time segments where the signal can
be reasonably treated as stationary. After that, it is reasonable to
perform a Fourier transform to each of the local segments of the
signal [short-time Fourier transform (STFT)]. Unfortunately, this
approach depends critically on the choice of the window function.
Once it is chosen, the width along time and frequency axes is fixed in
the entire time-frequency plane. This causes constant time and
frequency resolutions.

The wavelet transform is particularly useful for the analysis of a
nonstationary and fast transient signal. Unlike the STFT analysis, the
window function is a compressed or dilated version of the same
function (mother wavelet) when it is shifted through the signal. It
allows a time-frequency representation of the signal, contributing to
overcome the resolution problems (7' = 1/df) of the STFT. In a
multiresolution wavelet analysis, the signal is decomposed with
different resolutions corresponding to different scale factors (levels)
of the wavelets. This procedure can be employed to represent the
original acoustic noise signal with a series of detail and
approximation functions. The resolution, which is a measure of the
detailed information, is changed by an iterative filtering process, and
a variable scale allows the upsampling or the subsampling of the
signal.

Wuetal. [1] proposed the short-time Fourier transform of sampled
noise signals and the principal component analysis for the feature
vectors extraction. Classification has then been performed by
projecting these vectors into the principal component subspace and
verifying the distance from the locus of the different training sample
set.

Liu [2] described a recognition system based on a biological
hearing model to extract multiresolution feature vectors such as
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cochlear filter and Al-cortical wavelet transform. Different
classification systems, such as the learning vector quantization
(LVQ), the tree-structured vector quantization (TSVQ), and the
parallel TSVQ (PTSVQ) have been implemented and compared in
terms of classification error and search and training time.

Sampan [3] presented a microphone array technique to detect the
presence and classify the type of the sound source. The feature
vectors included the energy features extracted in a specific frequency
band. A multilayer perceptron and an adaptive fuzzy logic system
were used for the successive classification.

Undoubtedly, the classifier accuracy depends on the feature
extraction process. The state of the art of the speech recognition
techniques, like Mel-frequency cepstral coefficients, and a statistical
classifier as Gaussian mixture models (GMM) or hidden Markov
models (HMM) [4], seems to be inappropriate for aeronautical
applications because of the poor accuracy of the spectral information.

The feature vectors obtained from the log magnitude of the STFT
of acoustic signals provide, instead, good practical results. They are
often followed by a principal component analysis or by a third-octave
bin data partition, to compress the data into feature vectors of
reasonable size [4].

As a time-frequency approach, wavelet transform for extracting
distinctive information from the acoustic signatures has been
investigated. It is the most promising method, used by Choe et al. [3],
Maciejewski and Chang [6] and Dress and Kercel [7], that provides
time-frequency multiresolution analysis useful for a compact signal
representation.

II. Aircraft Acoustic Signature identification
A. Identification Method

The method developed for the aircraft acoustic signature
identification employs a wavelet multiresolution analysis of noise
signals and a statistical analysis of the noise events for each aircraft
class [8]. This investigation plays a crucial role in learning the system
classifier, a dedicated neural network, with feature parameters of
reasonable size, and condenses, at the same time, all the peculiar
characteristics of each aircraft noise.

The proposed method for the aircraft acoustic signature
identification can be summarized into two different phases:
1) training phase and 2) aircraft identification phase.

The training phase consists of the definition of the acoustic signal
properties and their collection into representative feature vectors of
each aircraft acoustic signature. It contributes to define an aircraft
feature database on the basis of which the system classifier is
designed. In the second phase, the identification phase, any new
aircraft noise signal is processed by means of a neural network
classifier that gives, as output, an estimation of the grade of similarity
with the included classes.

In Fig. 1 the training phase is described. Each different airplane
noise time history is time frequency analyzed on the basis of a
wavelet-based decomposition. This process aims at investigating the
frequency content of the original noise signals and offers, at the same
time, optimum time-frequency resolution, only limited by
Heisenberg’s uncertainty principle [9]. The second step, the feature
extraction process, is based on a statistical analysis of the wavelet
coefficients and on the evaluation of the energy content of each
wavelet decomposition level. This approach intends to include, in a
statistical point of view, the great variability of the measured data that
could affect the signature evaluation of each aircraft class. The
wavelet transform coefficients for the finite impulse response (FIR)
filter bank are taken from Daubechies [10]. Twelve-level wavelet
transform is computed for each of the events. This phase is essential
for a correct aircraft noise classification and means to carry out an
optimum estimation of the acoustic information.

The classification of each aircraft noise signal employs the feature
vectors obtained from the previous analysis to design a dedicated
neural network. This process is a function fitting process between the
feature vectors and the output vector corresponding to specific
aircraft types. It is based on the classes definition and allows the
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Fig. 1 Aircraft acoustic signature: training phase flowchart.

identification of the degree of similarity between any unknown
acoustic signal and the classes of recognition.

In the training phase, the extracted feature vectors of each aircraft
noise signal, called training data set, are used to train a neural net in
which the aircraft types and maneuvers constitute the output vector.
This process allows one to tune the weight functions and biases
between the net neuron connections.

The recognition classes, correspondent to the number of different
aircraft training data, are identified with the output nodes. The back
propagation training algorithm is used in the training phase.

The system is trained with the signatures obtained from different
noise time histories for each aircraft and maneuver. The final result is
a trained neural network which needs a sufficient number of events
(patterns) to perform the correct classification of the noise signals to
be identified.

The aircraft identification phase is described in Fig. 2. The process
of acoustic signature extraction, described above, is again repeated
on the “unknown” aircraft noise emission. The feature vector is then
processed by the trained neural network classifier to recognize the
airplane class with the relative percentage of successful
identification. The classification process, performed by the network,
consists of the evaluation of the acoustic similarity between the
processed noise event and those evaluated during the training phase.

B. Wavelet-Based Feature Extraction

The feature extraction process is generally considered a data
mapping procedure which determines an appropriate feature
subspace of dimensionality M from the original space of
dimensionality N (M < N).

Wavelet transform, particularly indicated for applications such as
image compressing, data compression, and pattern recognition, is a
powertul tool for acoustic signature detection purposes.

The continuous wavelet transform of a function f(¢) is a
decomposition of f(¢) into a set of kernel functions /1 ,(¢) called the
wavelets:

W,(s.7) = / FORE (1) di (1)



1198 QUARANTA AND DIMINO

Input
Noise time history

Airplane external noise

)

Time-frequency representation Featur_e
Extraction
Aircraft
Acoustic
I N .
| \ Signature
‘ X Identification
|

Statistical parameters
extraction

Classification

Output
Airplane
Identification

Airplane type

Fig. 2 Aircraft acoustic signature: aircraft identification phase
flowchart.

where * denotes the complex conjugate. The results of the
continuous wavelet transform are many wavelet coefficients
W, (s, T), which are a function of scale s and position 7. The wavelets
are generated from a single basic wavelet (mother wavelet) () by
scaling and translation:

hy (1) = %h(t; T) @)

where s is the scale factor and 7 is the translation factor. The wavelets
are dilated when the scale s > 1 and are contracted when s < 1. The
wavelets generated from the same basic wavelet have different scales
s and locations 7, but all have the identical shape. The constant s~!/2
in the expression of the wavelets is for energy normalization. The
wavelets are normalized as

[inopai= [popa= )

Calculating wavelet coefficients at every possible scale is a fair
amount of work, and it generates a great amount of data. Thus, if we
choose scales and positions based on powers of two (so-called dyadic
scales and positions), the analysis will be much more efficient and
just as accurate. We obtain such an analysis from the discrete wavelet
transform (DWT). An efficient way to implement this scheme using
filters was developed in 1998 by Mallat [11]. The Mallat algorithm is
a classical scheme known as a two-channel subband coder.

This very practical filtering algorithm yields a fast wavelet
transform—a box into which a signal passes and out of which
wavelet coefficients quickly emerge [12]. The original signal §
passes through two complementary filters and emerges as two
signals: the low-frequency component that represents the
approximation coefficients, and the high-frequency component that

represents the detail coefficients, Fig. 3. It performs, at the same time,
a dyadic decimation (downsampling) of the signal.

In the proposed approach, the wavelet transform coefficients for
the FIR filter bank were taken from Daubechies, Fig. 4. However the
choice of the wavelet family has been demonstrated as not very
relevant when using both a long time signal and a statistical analysis
on the signal wavelet decomposition.

For many signals, the low-frequency content is the most important
part. It is what gives the signal its identity. The high-frequency
content, on the other hand, imparts flavor or nuance.

In a wavelet multiresolution analysis, a signal of length N = 2L
can be expanded in « different ways, where « is the number of binary
subtrees of a complete binary tree of depth L, Fig. 5. As a result,
a > 22,

As this number may be very large, and because explicit
enumeration is generally unmanageable, it is interesting to find an
optimal decomposition with respect to a convenient criterion,
computable by an efficient algorithm. The number of scale
decompositions is typically determined by looking for a minimum of
the criterion. Because the analysis process is iterative, in theory it can
be continued indefinitely. In reality, the decomposition can proceed
only until the individual details consist of a single sample or pixel. In
practice, it is necessary to select a suitable number of levels, based on
the nature of the signal, or on a suitable criterion such as entropy [13].
The use of entropy allows one to determine whether a new splitting is
of interest to obtain minimum-entropy decomposition.

The left unilateral binary subtree of depth D = 12 has been chosen
to detect the major frequency components of the signals, Fig. 6.

Twelve-level wavelet transform was computed for each of the
events. The feature extraction process was based on the estimation of
first-order statistical parameters and energy content of the wavelet
coefficients of each resolution level.

The proposed wavelet-based feature extraction process consisted
of the following:

1) 12-level Daubechies D4 wavelet transform for each of the
events;

2) statistical and energy analysis of the wavelet transform
coefficients of the FIR filter bank;

3) feature vectors calculation and normalization;

4) neural network training and classification.

The approximations of the signal at each level were discarded and
the detail functions of each level were analyzed. By processing the
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Fig. 3 Schematic diagram of discrete wavelet transform.
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signal on wavelet subspaces, the temporal character was not lost; it
was compressed by a factor of 2 for each transform level. This
algorithm allowed one to condense the acoustic signal information
and to extract relevant features from the acoustic events to design a
neural network classifier.

The aircraft acoustic signature features made use of the first-order
statistical parameters and the energy content of the wavelet
coefficients to extract the signal features from the acoustic emission
of each aircraft noise data. The feature vectors, consisting of the
global statistical parameters (average, standard deviation and
variance) and the energy concentration of the wavelet coefficients,
calculated for each resolution level, have been used to design the
neural network classifier.

In Fig. 7, the noise time history (bottom and right) of an
Airbus A320, during a landing maneuver on Naples airport of
Capodichino, is reported. The related Daubechies-4 wavelet
coefficients of each resolution level are presented.

@
- . ai(n)

ao(n)

III. Experimental Training and Validation

As described in the previous paragraph, the system, developed for
the aircraft acoustic signature identification, processes noise time
histories of airplanes and gives, as output, the identified airplane and
maneuver, together with an index of the percentage of successful
identification. On the whole, the system performs online processing
of the noise events but requires a previous collection of aircraft noise
measurements to learn the system classifier. The algorithm input is
the noise time history of the airplane to be identified; the
identification task is possible only for airplane types and maneuvers
for which the classifier has been trained.

A preliminary evaluation of the developed algorithm for acoustic
signature recognition has been numerically performed by simulating
different airplane noise sources [5]. Subsequently, the algorithm test
and validation have been experimentally carried out for different
airplanes. An experimental campaign, focused on the collection of
noise measurements produced by several airplanes during takeoff
and landing maneuvers, has been performed to refine and validate the
system. In this paper, the experimental results, in terms of airplane
classes analyzed and then recognized, are presented.

The experimental activity of ground noise measurements has been
carried out at the Naples airport of Capodichino. Test activities have
been executed in 2 weeks (16—-27 May 2005). More than 200 aircraft
noise events of five aircraft types (Airbus A320, Boeing B737,
McDonnel Douglas MD80, Fokker F100, Aerospatiale/
Alenia ATR72), during both takeoff and landing maneuvers, have
been measured.

A. Noise Data Collection

The experimental activity has been performed at one of the four
GESAC (Naples Airport Management Company) noise monitoring
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e e
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Fig. 6 Left unilateral binary subtree.
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Fig. 8 Test site distance from the Capodichino airport.

stations. The test site was located near the Naples airport (about
2 km), positioned along the clear-way zone, Fig. 8. The final landing
phase or initial takeoff phase of several airplanes has been evaluated.

Omnidirectional microphones have been placed, with a dedicated
tripod, at about 1 m from the paved edge, and pointed upward. The
acoustic events have been recorded with a digital tape recorder.
Recorder configuration and operation have been performed with a
laptop PC through a SCSI connection, Fig. 9.

Noise signals have been measured with a sample frequency of
40 kHz. In Table 1, the number of total measurements for each class
(aircraft and maneuvers) is reported. Data sets were divided into
training and identification data. The first have been used to train the
neural network, whereas the second have been employed to test the
classifier performance. Noise data measurements were grouped into
nine airplane classes as follows: 1) Airbus A320 takeoft, 2) Airbus
A320 landing, 3) Boeing B737 takeoff, 4) Boeing B737 landing,
5) Fokker F100 takeoff, 6) Fokker F100 landing, 7) MD82 takeoff,
8) MD82 landing, and 9) ATR72 landing.

They correspond to three engine configurations: 1) two turbofans
with engine on wing (A320, B737), 2) two turbofans with engine on
fuselage (MD82, F100), and 3) one turboprop (ATR72).

Meaningful differences in the measured noise data for each
airplane class have been observed. They were attributed to the
following reasons: 1) different airplanes, airlines, weight, trust,
number of passengers, airplane aging; 2) very different flight
altitude; 3) very different weather conditions (temperature, humidity,
wind, etc.) and consequently different sound wave propagation and
attenuation; 4) no stationary background noise (industrial activity,
birds, airport traffic, etc.); and 5) no dead acoustic environment
(terrace floor and building reflection).

The nonuniformity of the different noise data for each class
(airplane and maneuver) has represented the key problem for the
identification task. Despite the nonuniformity of the events included

Power Supply
Mic. Soundfield ST250

Table 1 Number of measured runs for each class (aircraft types and

maneuvers)
Aircraft Maneuver No. of runs Training Identification
data set data set
MDS§2 Takeoff 25 13 11
MDg2 Landing 31 13 17
A320 Takeoff 20 13 7
A320 Landing 28 13 15
B737 Takeoft 20 13 7
B737 Landing 24 13 11
F100 Takeoff 17 11 3
F100 Landing 23 13 9
ATR72 Landing 4 3 1

in aclass, alot of efforts have been addressed toward the extraction of
a set of independent features. In other words, data variability of each
class has been verified small enough to make the features as
representative of such a class of acoustic signature.

B. Aircraft Noise Analysis

The aircraft noise analysis demonstrated the possibility of
extraction of homogeneous parameters from aircraft noise
measurements, Fig. 10. This activity allowed the evaluation of the
feature vector terms and their reliability for the characterization of
aircraft classes. The feature vectors have been evaluated in terms of
their aptitude of collecting all of the acoustic information useful for
the aircraft recognition. Following, some terms of the feature vectors
obtained for the different class of airplanes are presented. The
analysis has been extended to all the noise signals measured during
the experimental campaign and distinguished for the different
aircraft types. Figure 11 represents the energy distribution of the

Fig. 10 A320 landing noise measurement.

Soundfield ST250
Microphone

[ ] [

M 4 Cables 2 m. length

M 2 Cablas 3 m. length

N 1 Cable 5 m. lengih

N, 2 Cables 3 m. length

Digital Data Recorder
HEIM DISC6

Power Supply
Ommidir Wic.

] =
—
Omnidirectional
microphones

Fig. 9 Test setup: noise measurement stations.
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wavelet detail coefficients, calculated for each resolution level. The
standard deviation distribution of the values extracted from each
aircraft noise signal is described in Fig. 12. These data are
representative of the different distributions of the feature parameters
obtained for each aircraft class. To characterize the variability of the
parameters employed for the aircraft classification, the analysis has
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been also addressed toward the identification of the domain and
range of the given events (see Figs. 13 and 14). The differences
observed are indicative of the homogeneity of the noise signals
emitted from specific airplanes and the possibility of designing a
classifier to recognize the different classes. Such results confirmed
the reliability of the strategy proposed.
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Meaningful differences in the statistical parameters, extracted
from the measured noise data of each class, have been observed. In
spite of the environmental influence (background noise, weather
conditions) on the aircraft acoustic signatures, the regions of
similarity, obtained for the nine classes of aircrafts, resulted in being
peculiar and recognizable. For each aircraft class, the noise
signatures measured during the landing and takeoff maneuvers have
been compared. Figures 15-22 show the range of the signature
values calculated for the different types of aircraft. This confirms the
possibility of aircraft recognition by acoustic signature identification.

C. Results

The proposed system for aircraft acoustic signature identification
has been developed by combining the wavelet multiresolution
analysis (WMRA) with an artificial neural network (ANN). After a
thorough analysis of the aircraft noise signals, the feature values
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Fig. 19 Fokker 100: comparison of landing and takeoff wavelet detail
coefficients.



QUARANTA AND DIMINO 1203

Range [mean +- Standard Deviation] of the Energy of the Wavelet Detail coefficients
T

35 il T
=@ Fokker 100 Landing (Mean) A
===« Fokker 100 Landing (Mean + Std Dev.)
30| ===+ Fokker 100 Landing (Mean - Std Dev)
=@~ Fokker 100 Take off (Mean)
===~ Fokker 100 Take off (Mean + Std Dev.)
-« Fokker 100 Take off (Mean - Std Dev.)
25 : = .
20
15
10
5l
0 -
_5 1 L L 1 1
0 2 4 6 8 10 12

Fig. 20 Fokker 100: wavelet detail coefficient range comparison of
landing and takeoff.
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Fig. 21 MD82: comparison of landing and takeoff wavelet detail
coefficients.
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extracted have been employed to train a neural network. By means of
the artificial classifier (ANN) an evaluation of the degree of similarity
between the input (the unknown airplane sound pressure time
history) and the classes (airplane and maneuver), for which it has
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Fig. 22 MD82: wavelet detail coefficient range comparison of landing
and takeoff.

been trained, has been performed. The identification of the noise
signals has been carried out through an index giving the estimation of
the grade of correct recognition.

The results of an identification phase are reported in Fig. 23. It
provides different types of information: the identified aircraft and
maneuver, the index of relative percentage of successful identi-
fication, the file to be identified (input), and a plot of the noise time
history (sound pressure versus time) of the processed file.

The degree of similarity, between the current file (input) and those
employed for the database training, is expressed in a percentage
scale. The 0% value means no similarity with any class; the 100%
value means full similarity with one specific class. Thus, a rank of
100% identifies the class having the highest similarity with the input.

In Table 2 the experimental results of the classification test are
reported. The analysis of the system performance has been carried
out in terms of correct and false identifications. This process was
feasible because for each sound pressure time history to be identified,
the relative airplane and the maneuver were already known.

In the case of correct identification, the third column of Table 2
describes, for each airplane and maneuver, the number of correct
identifications for which the second highest classification rank is
<80%; whereas, the fourth column describes the number of correct
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Fig. 23  Aircraft Identification: MD82 takeoff.
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Table 2 Classification results

Correct identification

Wrong identification

Aircraft Maneuver 2nd < 80% 2nd > 80% True > 80% True < 80%
A320 Takeoff 5 1 0 1 (75%)
A320 Landing 8 5 1 (88%) 1 (70%)
B737 Takeoff 7 0 0 0
B737 Landing 8 2 1 (99%) 0
ATR72 Landing 1 0 0 0
F100 Takeoff 3 0 0 0
F100 Landing 6 1 1 (88%) 1 (<50%)
MDS82 Takeoff 10 1 0 0
MD82 Landing 14 3 0 0

identifications for which the second highest classification rank is
>80%.

The number of wrong identifications is reported in the fifth and
sixth columns of Table 2. In this case, the true airplane and maneuver
have not obtained the maximum rank (100%) in the classification
process. Thus, for each class, the number of occurrences for which
the true airplane has been classified with a rank >80% (# 100%) is
reported in the fifth column; whereas the number of occurrences for
which the correct airplane and maneuver have been classified with a
rank <80% is reported in the sixth column.

IV. Conclusions

Noise emissions are a critical problem for aircraft. Identification of
the noise source and the association between the aircraft and the
emitted sound pressure level is fundamental for airport authorities.
Each aircraft presents its own signature by the point of view of noise
emitted spectrum. Several algorithms based on the recognition of this
kind of information have been developed in literature. Classical fast
Fourier transform (FFT) extracts a limited amount of information
from the time signal. By using the wavelet transform, this work
demonstrates the necessity of collecting information about time
variations of the frequency content of the signal to detect moving
sources. The wavelet multiresolution analysis of the aircraft noise
signals has allowed the definition of a reliable approach. Besides, the
procedure developed for aircraft identification (ID) employs a neural
network as a classifying algorithm, to define the belonging or not of a
vector to a class of elements with some defined properties.

The developed system, unlike electromagnetic radar or ultrasonic
sonar, has been thought of as a passive (only listening) modus
operandi to allow the identification of airplane types and maneuvers
by processing only the sound emissions. The developed artificial
neural network has been demonstrated as able to establish if a time
signal, elaborated through a wavelet process, is or is not similar to
another, having been recognized as originated by a defined type of
aircraft.

The artificial neural network was trained by the use of a subset
of experimental data, in this same frame of activity, acquired and
then validated through the comparison with another subset of
elements, and somehow originated by the same experimental
campaign.

Experimental data were obtained at the Napoli Capodichino
Airport and were relative to (five) different kinds of aircraft.

The developed system was demonstrated as able to give more than
satisfactory results for each of the acquired spectra, with the
maximum error always under (10)%. Though the tests showed a
good success rate in aircraft ID, the tests were done at the same
location. The robustness of the ID technique has to be investigated by

extending the experimental analysis to a greater noise database
comprising several types of aircraft.
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